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When you give the final lecture,
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Theory

When you give the final lecture,
there’s nothing much left to say ...

... 50, following in the footsteps of Reinhard Stock,
it may be worthwhile to take a look at the

BIG PICTURE.
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RHIC in the QCD Landscape
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Theory

LQCD equation of state

7’ 16 |

gluons

Degrees of freedom: v :[(gx§)+%><(12><3><Nf):><(1—0(82))

quarks

I 1

spin

color

spin I color I flavor

SPS

RHIC LHC

8SB/T4 4
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HQUELE
ETheorg
Speed of sound Susceptibilities x
ol =1 B = baryon number
0 HotOCD Q = electric charge
Collaboration S = strangeness
0.4 ' ' ' '
® e SB
1.0 | = 4 23
o @: N L free light quarks
0.3 1 0.8 | .
ﬁ.éA B
0.6 oﬁ Q
0.2 [~ ' "\ A5 —o—
0.15 :\ ‘; A BT T e — @% Xg —A—
T NG KT TR s [ — : 0.4 G
01+ HRG (T;=180 MeV) - wwww og Conserved open: Ny=4
VH2 hydro - 0.2 | @~ quantum number full: N..=6
0.05 r s susceptibilities T
5 oo T[MeV] 0o | | | T [MeV]
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Observables

Which properties of hot QCD matter can we hope to determine
from relativistic heavy ion data ?
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Which properties of hot QCD matter can we hope to determine
from relativistic heavy ion data ?

1, < §&p,s Equation of state: spectra, collective flow

¢ =dp/oe Speed of sound: multiparticle correlations
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(0 = I
Observables

Which properties of hot QCD matter can we hope to determine
from relativistic heavy ion data ?

l, < &p.,s . spectra, collective flow
c:=0dp/oe . multiparticle correlations

lr o, . . .
n= —Jd x<Txy(x)Txy(O)> : anisotropic collective flow

T
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Theory

Observables

Which properties of hot QCD matter can we hope to determine

from relativistic heavy ion data ?

l, < &p.,s
¢ =dp/oe

n= ljd%(Txy ()T, (0))

A

q=

Q>

A

€ =

4naC

N
4naC

N_
4naC

N’ —

- [ay (F ()R )

©Jdy (io A" ()A™ (O)

- Jdy (F* ()" (0)

'

: spectra, collective flow

: multiparticle correlations

: anisotropic collective flow

parton energy loss
modified jet fragmentation
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Observables

Which properties of hot QCD matter can we hope to determine

from relativistic heavy ion data ?

l, <
c:=0dp/oe

E,p,S

n= ljd%(Txy ()T, (0))

A

q=

Q>

A

€ =

D

47raC

N
47rocC

N_
47rocC

N’ —

— lim L In <E“ (x)E“ (O)>

[x|— o0 | X |

- [ay (F ()R )

©Jdy (io A" ()A™ (O)

- Jdy (F* ()" (0)

'

: spectra, collective flow

: multiparticle correlations

: anisotropic collective flow

parton energy loss
modified jet fragmentation

Color screening: Quarkonium states
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Theory

Observables

Which properties of hot QCD matter can we hope to determine

from relativistic heavy ion data ?

l, <
c:=0dp/oe

E,pD,S

n= ljd%(Txy ()T, (0))

A

q=

Q>

A

€ =

D

4ﬂaC

N
4naC

N_
4naC

N’ —

~ lim L1n<Ea(x)Ea(0)>

[x|— o0 | X

- [ay (F ()R )

©Jdy (io A" ()A™ (O)

- Jdy (F* ()" (0)

'

: spectra, collective flow

: multiparticle correlations

: anisotropic collective flow

parton energy loss
modified jet fragmentation

Color screening: Quarkonium states
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Observables

Which properties of hot QCD matter can we hope to determine
from relativistic heavy ion data ?

' & &,p,s Equation of state: spectra, collective flow

Easy for HY
LQCD :
¢ =0dp/de Speed of sound: multiparticle correlations
1
n= —J-d4x<Txy(x)Txy(0)> : anisotropic collective flow
A 47[ a C a+i a+
§=— [y (F*'GOE™ (0)
N
A 477: o C a+ a+
=N _[dy (i7 A" (y)A(0))r  parton energy loss
AT, modified jet fragmentation
A T OC a+-— a+-—
6, =— =t [dy (F*()F*(0)
N J
1 . .
Easy for = — lim —1n<E“(x)E“(O)> Color screening: Quarkonium states

LQCD My
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The (almost)

“Perfect Liquid”




HEUELEY

Theory

Elliptic Flow (v2)

Reaction
plane

1185

Hydrodynamics:

Flow is generated by VP

2/
N\ /
\ J
{\ /
%/

vV, = €0s(20)
coefficient of the
azimuthal distribution

N
N —

| e —_—

“ —~~
/TN

VP(<) > VP(?)
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V,(o7) vVS. hydrodynamics

I | I | I
. Hydro model PHENIX Data STAR Data _
T 0wt A KQ
""" A KK ® A+A

o
W
|
A\

o
N

Anisotropy Parameter v,
o

(=

Transverse Momentum p + (GeV/c)
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V,(p+) VS. hydrodynamics

" Hydro model =~ PHENIX Data  STAR Data -
N O mtr A Kg
=~ 0.3 ' —
Q
GJ _
=
T 0.2 _
(0
X + { _
>
o
o 0.1 —
2 Mass splitting characteristic
= property of hydrodynamics
< 0lL< —
I | | I

0 2 4 6
Transverse Momentum p + (GeV/c)
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(0 I
V,(o7) vVS. hydrodynamics

I I | I
. Hydro model | PHENIX Data STAR Data _
O mtr A KO
A KK ® A+tA  _|

o
W
|
A\

o
N

o
-

Failure of ideal
hydrodynamics
tells us how
hadrons form

Anisotropy Parameter v,

(=

| | | |
0 2 4 6

Transverse Momentum p + (GeV/c)
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(D = S
Elliptic flow "measures™nqgp

We finally have a complete, Shear viscosity
causal formulation of

relativistic viscous o
. uv "
hydrodynamics: Tﬂ{dn _I_(uul—[wl +uvHM)du } v

0 T" =0 with T"=(ctPu'u’ —Pg" +11"

i e n(a“uv +0"u" — trace) —IT"

10
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(0 »
Elliptic flow "measures™nqgp

We finally have a complete, Shear viscosity
causal formulation of :

e e o0 T" =0 with T" =(c+Pu'u’—Pg" +T1"
relativistic viscous u :

. uv A '
hydrodynamics: T, [ ar_ (uunvA + uVH“’I)dL} _ ﬁ(aﬂuv +9'u" — trace) —
dt dt
I = Hys—mll _ : Complete set of causal, dissipative
+ Tngq-u-— fﬂqu q—Colld relativistic hydrodynamics egs.
+ Angg-Va+ Ane ™o (B. Betz & D. Rischke, JPG36,2009)

T ‘ " T e (Y a
— Tan N — 7ge @9 4y, + o VIIT — £ N° T mon + 140 g — 3()1q"9
— Ao @ + Ain MV ¥a + Ay 7V, |
= g — Ty A
+ 27gq q~Hu” 4 2 i‘,q VG 4 27 my o™ — 296y ¥ 0
- 27: W)\.:POP:.’\ — 2,\3‘-‘. g'V"a+ 2A g |

10
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Theory
Elliptic flow "measures™n
We finally have a complete, Shear viscosity
causal formulation of | E
Co . o0 T"" =0 with T" =(ecxPu'u" —Pg" +T1"
relativistic viscous g :
hvdrod - dr1r™ o aondut | Y, o )
ydrodynamics. T +(u“1_[ +u"TT* )— = n(a“u +0"u" —trace)—H“
dt dt
Glauber model Saturation model
25 : : : : : , . o 25 . l , — ,
o gﬁg n\(,m_EO;N correcled (est.) | - | & STAR non-flow corrected (est). . R
e s e \TAR event-plane e
/s =0.08/ =} -
“ n/s=0.08 ! /.......... -
g I5F ..... . = 15F 00.”. - =
9 ) : v... oOOOOOOOOo 009 é o0k YOO0RC, CCL
g AOOO a i 1 1/s=0.16 2 I °® .N’MC"“"' o - o '
1ok s * _ =10} f« S bs:O lé
= . | B .')'03)‘) n/S B '1
Sk M .Luzum & R. Romatschke - ] o ﬁ -
PRC 78 034915 (2008) _ j .
0 | p 1 ; 0 : M 1 : 1
2 3 4 a 1 2 4
p;[GeV] P, [GeV]

1V
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) v
AdS/CFT duality

AdS

J. Maldacena (1997):

(3+1)-dim SYM theory
in the Ng, Vg2N: — o limit
IS dual to classical super-
gravity theory on AdSs.

11
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ETEEQ " JEE—
AdS/CFT duality

CFT J. Maldacena (1997):
~ (3+1)-dim SYM theory
| | AdS IS dual to classical super-
| gravity theory on AdSs.

Application to RHIC invokes a 5% dim. BH.
Thermal CFT < AdS BH Dictionary

Stress tensor <> Asymptotic metric

Entropy <> Horizon area

Viscosity <> Graviton absoption

11

Saturday, June 12, 2010



HQELEE
Perfect fluid

Dissipation is dominated by absorption of gravitons
on the black brane:

Universal bound ? — Kovtun, Son & Starinets (2005)

41

J

n_
\S

Similar bound in kinetic theory from unitarity limit of
cross sections and/or uncertainty relation
[Danielewicz & Gyulassy '85].

12
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Perfect fluid

Dissipation is dominated by absorption of gravitons
on the black brane:

n_
\S

— Kovtun, Son & Starinets (2005)

41

J

Universal bound ?

Similar bound in kinetic theory from unitarity limit of
cross sections and/or uncertainty relation
[Danielewicz & Gyulassy '85].

Bound is probably not completely universal, but far
below n/s of any known material (except ultra-cold

gases of fermionic atoms with unitary interactions)
12
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Hunting for perfection...

Theory

(CGC) | (Glauber)
STAR E v, (2009)

(Glauber)
s s PHENIX v, WWNDO09
Lacey et al, PRL 092301 (2007)

(? r Drescher et al. PRC76 024905 (2007)
(CGC) (Glauber)

= (CGC) e e S

STAR P, correlation (2009)

IIIIIIIIIIIIIIIIIlIlIIIIIIlIlllllluflllllllllllllll

AR Chg. v_ (2009)

]

Gavin & Abdel-Aziz, PRL 97 162302 (2006) .
(pt correlation) © (number density correlation)

Hydro. calculations, Song SQMO08, HeirJz WWNDO09

P. Romatschke & U. Romatschke, PRL 99 172301 (2007)

PHENIX PRL 98 172301 (2007)

Hees et al., arXiv:0808.3710

tured

quantum limit

H. Meyer, PRD 76, 101701(R) (2007) [Lattice QCD]
== (T=1.65T)

Demir & Bass, arXiv:0812.2422 (2009) [hadron gas]

conjec

Aihong

Tang (STAR)

-

2 4 6 8

10 12

4t n/s

13
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Theory
Hunting for perfection...
(CGC) |(Glauber)
STAR E v, (2009)
sl (CGC) wy_ STAR Chg. v, (2009)
My s (et PHENIX v, WWNDO9

Lacey et al, PRL 092301 (2007)

Drescher et al. PRC76 024905 (2007)
STAR P, correlation (2009)

IIIIIIIIIIIIIIIIIlIlIIIIIIlIlllllluflllllllllllllll

]

Gavin & Ahdel-Aziz, PRL 97 162302 (2006) .
(pt correlation) © (number density correlation)

Hydro. calculations, Song SQMO08, HeirJz WWNDO09

P. Romatschke & U. Romatschke, PRL 99 172301 (2007)

Aihong|Tang (STAR)

PHENIX PRL 98 172301 (2007)

Hees et al., arXiv:0808.3710

65T)
Demir & Bass, arXiv:0812.2422 (2009) [hadron gas]

2 4 6 8 10 12
4t n/s

conjectured
quantum limit

(&)

-

H. Meyer,( D 76,101701(R) (2007) [Lattice QCD] Y~
' (o)

.-

|

-
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Theory

Hunting for perfection...

DOES IT BOTHER I MEAN, EVERYTHING 16 50

YOU TO LIVE IN UNCERTAIN AND S0 CON .
TMES LIKE INCERTAIN S0 CONFUSED

THESE, LUCYZ

—

WHAT ARE YOU TRYING TO
DO, START AN ARGUMENT?

14
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Theory

Hunting for perfection...

DOES IT BOTHER
YOU TO UVE IN
TIMES LIKE

r—————_ —
DOES IT WORRY YOU OR
| BOTHER YoU, OR DO YOU...

I MEAN, EVERYTHING 1650
UNCERTAIN AND S0 CONFUSED.,

We know how
to settle the
argument !

WHAT ARE YOU TRYING TO
DO, START AN ARGUMENT?

\

Viscous hydro

&
global data fit
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Collective Flow
and
Deconfined Quarks

15




Bulk hadronization

Fast hadrons
experience a
rapid transition
from medium to
vacuum for fast
hadrons

Sudden recombination

"@ Pp = 3pQ

~@ Py = 2pQ

> M

16
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Bulk hadronization

Fast hadrons
experience a
rapid transition
from medium to
vacuum for fast
hadrons

> M

Sudden recombination

Pp = 3pQ

16
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Quark number scaling of v,

Theory
1 p
M 0 t
2"
™~N
> 0.3 = BlastWave fittoZ= ‘
0.25 Hydro;:nodel | ‘L
@y |
0.2} A% 1| ]
| -. v

~ STARPreliminary

@ =+= WO+

a KS % A+A

|

1 2 3

4 5 6
p| (GeV/c)

17
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Quark number scaling of v,
1 pr 1 B 0 pt
—V; V5 —vV =vs| =L
2 (pz) ( 2 j 3 2(pt) 2 3
5 0.
0.08/ | | | 4
LTINS
0.06:— ”'g*" _ I
0.04 s
[ .
002 A B e J—
o4 |
0 1 2 3

p,/n (GeV/c)

Emitting medium is composed of
unconfined, flowing quarks.

17
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Quark number scaling of v,

Theory

%V (p,)=V; (l;j

1
Vo (pz) \& (pt)

v2/n

0.1F
0.08] | | |
- 1 Y - A
RE .l+ |
0.06} " e SRR ¢
: oY
@
0.04/ 4
S
0.02 5’ AK, ® A4A * T4+%
- A
L A®
o—-@ : 1
0 1 2 2

p,/n (GeV/c)

Emitting medium is composed of
unconfined, flowing quarks.

3 3
: 1 | I 1 | I 1 I ' |
;N Au+Au ¥s,, = 200 GeV, 20-60% -

0.1 -

» ! * »
*%
0.05
0 S | 1 R R R e I
0 0.5 1 1.5

KE./n (GeV)
17
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(J = I
The QGP is strange !

Strange hadron production is enhanced, as predicted,

Yield is chemically equilibrated with error of less than 4% !

. ©
- . e N !
o v Inclusive p 5 -x TT
S = !
o $i =1 m= T _LL_<}\ (SSS)
o .= T O ) +Q) s
:D]O o ‘ C)-IO Q2 . T '[.l’:
> Ntz ¥ E il
= L <l -
= = O I e
pr "R Lyay = (0ss)
= . ¥ = 2 £
s - 58 ¢ .
< L LA  f g8
[ [ & & ol T % v
D il 7 - & T $ =
e THrz5e | ~ e L - TW\ (qgs)
vIVYYVYIl, O O Tk
l-'l 11+ 7y L+ ¥
M e
| J * STAR L o
m l s l
10 107 Ny, 1 10 10 Noar

18
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(= I
The QGP is strange !

Strange hadron production is enhanced, as predicted,
Yield is chemically equilibrated with error of less than 4% !

0 0
Q. v Inclusive p = LIy TTT
O O . 1
o |oeA L - 1 1L<—— (s85)
210" WE & Sope s KT F
> > I T N
D E O e _ . .
p T s 5% === (89} Combined with
Zi p T—Q Zi T BT
< . - 59 | £ 1 & __s . valence quark
< ] ¢ T ET 1. 7 8% e j-‘; .
3 I rsevd | s> 0(qqs) | scaling law
M | i g - D) O +& ;, ofe
I RS ; 4= ! we can utilize |
:13 ~ | ﬁ | i strange quarks §
| J % STAR | I % STAR | |
for ...
l ol | puld | A A T SRS e
1 10 10 Ny 1 10 10° Npan
18
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Quark spectroscopy

Theory

An amazing idea only experimentalists can come up with...

Use ratios of hadron spectra
to infer valence quark spectra:

= o=(ssd), O=(ss), L2 =(s55)

102

STAR/UCLA group
I | l | | | | l | | | | l | | | |
- Fitting with Fries’ model (T, =170 MeV
=, ) (d)( 836 + 0.02 )
\" = L. - i C
o(p, /2) i
: %2/ndf = 26.6/41
# 98- v1(s) = 0.43 + 0.03c
- i/ o8 x2/ndf = 11/12
- (Q48)
5 (P./3)
o(p./2)
- S—
FUNTE :
. 0-5% i'
| 20-40% | ‘
A 40-60% %
o(p, /2)
Q(p,/3)/0(p_/2)
I | | 1 l | | | l l I I I 1 l | I | l
0 0.5 1 1:5 2

pT/nGI [(GeV/c]
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HQUELEN
Quark spectroscopy

Theory

An amazing idea only experimentalists can come up with...

Use ratios of hadron spectra

—

to infer valence quark spectra: 3
= =(ssd), ¢9=(ss), L2 =(s55) g
= (5p0)
d
(pT) ¢(%pT) 10? :
@ (ip,) [o(p)] W

STAR/UCLA group
| 1 l | 1 1 I l | | 1 | l | | | I
e Fitting with Fries’ model (T =170 MeV
=iB ) ) d)( 836 + 0.02 )
A\ = L. ' C
o(p_/2) -

x2/ndf = 26.6/41
v+(S) = 0.43 + 0.03c
x2/ndf = 11/12

- 0-5%
- 20-40%

A 40-60% %
o(p,/2)

s Q(p,/3)/0(p_/2)

0 0.5 1

l 1 l 1 l l i l 1 I I 1 l l l 1 |
1.5 2

pT/nq [(GeV/c]

Saturday, June 12, 2010



HQUELEN
Quark spectroscopy

Theory

An amazing idea only experimentalists can come up with...

Use ratios of hadron spectra
to infer valence quark spectra:

¢ =(ss),

—

—_—
-

=
(4v]
Q" =(s55) i—

o

= =(ssd),

STAR/UCLA group
| 1 I | 1 I I l | | 1 | l | | | I
e Fitting with Fries’ model (T =170 MeV
EAByS) ) d(336’002)
o(p_/2) ) R R0

xZ/ndf = 26.6/41
v(s) =0.43+ 0.03c
x%/ndf = 11/12

A 40-60% %

9 (ip,) [o(ip)] 10°

0-5%
- 20-40%

_op/2)
Q(p,/3)/0(p_/2)

DI MU SN RPS SP S SI ( A S
0.5 1 1.5 2

pT/nq [(GeV/c]
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Theory

Quark spectroscopy

PURE SATISFACTION!

20
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Theory

Instead of comments on

“Local Parity Violation™...

21
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Theory

A temptation...

I HoPE You WiLL BRING
ME LOTs OF PRESENTS,

DEAR GREAT PUMPKIN,
I AM LOOKING FORWARD
To YOUR ARRIVAL ON
NIGAT.

EVERYONE TELLS ME You ARE
A FAKE BUT I BELIEYE N

YOU.  giNcCERELY,
LINUS VAN PELT

.5, IF You REALLY ARE A
FAKE, DON'T TELL ME, I
PoN'T WANT TO KNOW,

;i
|
|

P By U
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Theory

A temptation...
DEAR GREAT PUMPKIN T HoPE You WILL BRING
T PUNPRIN, L0Ts OF PRESENTS,
I AW LOOKING FORWARD e RESaNIS But good
o0 Am%?é'agf' scientists
are not
tempted !

EVERYONE TE(LS ME YOUARE | | 2.5, IF You REALLY ARE A
A FAKE BUT I BELEVE IN | | pAKE DON'T TELL ME, I

you. GINCERELY PoN'T WANT TO KNOW,
LINUS VAN PELT } N

|
b
|

Toe By VA P
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Color Opacity

23




(0 I
Jet quenching in Au+Au

No suppression for photons Yield in A+A

Suppression of hadrons

2
\ PHENIX Au+Au (central collision$): RAA ( pT) — d NAA /dp T dy
. Direct 2
5 B Ao Iy (d O\ /dedy)
10 B ® 1
- GLV parton energy loss (dN/dy = 1100) ‘ !
- " /
- Area density
, Cross section
1= - +"+++++++ of p+p coll's in p+p coll’s
- | iIn A+A PP
i AA$%4
* Afﬂk% % ¢ A Without nuclear effects:
10"
- | | 1 | L] L RAA=1-
0 2 4 6 8 10 12 14 16

24
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(0 »
Radiative energy loss

Theory

_
20
7
q ;_?Lﬁ;jq .............

AN
A
i=p|q dq’ 376

Scattering centers

= color charges

25




(0 = I
Towards measuring g

Good fits for light hadrons are
obtained for all rad. energy loss
models in 3-D hydrodynamics

Bass, Gale, Majumder, Nonaka, Qin, Renk & Ruppert

¥ o s—— — ———c—— — T
~o[| ® PHENIXO. 5";
()8 m AMY. b 4 fm, (1,‘ =033 =]
B HT.b=24 = 1.5GeV’ =0.2
- |t = ASW.b=24fm K = I
= 04 i =
().2 'IH‘I’T—'-_‘IL—il_‘i_‘_‘_ —
() : ] l
- ®m PHE \l\ 20 - u
0.8 AMY, b =75 fm, &z_=0.33 2l
(| HT,b=7.5 fm, § , = 1.5GeV /fm, ¢, =0.2 i
:jj()'()_-—- ASW,b=7.5fm K = 5
& nal ‘ '[_
0.4z T‘ITTTT, % & *_I_. T
0.2 I I al
()- 1 | 1 | 1 | L | 1 | N |

6 8 10 12 14 16 18 20
Py (GeVic)
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Theory

Towards measuring g

Good fits for light hadrons are
obtained for all rad. energy loss
models in 3-D hydrodynamics

Bass, Gale, Majumder, Nonaka, Qin, Renk & Ruppert

B ]

1 ! 1 ! 1 ! | N | ) ||
PHENIX 0 - 5%

AMY.b=241fm, a =033 -
A D, S , N

HT.b=241fm,{ = 1.5GeV /fm, ¢ . = 0.2
-

ASW. b=24fm. K =36

< 0.6

0.2

), =1.5( eV /fm. Cp; = 0.2 ‘[ i
::().4-.‘ .TTTIIT' 3 __A _I_.}._._._-:

PHENIX 20 - 30%
AMY.b=7.51m, a =0. 33 o=

HT.b = 7.5 fm. {
ASW.b=75fm. K =36

| 1 | 1 | L | 1 | L |

3 10 12 14 16 18 20
Py (GeVic)

Transport parameter g
deviates by more than a
factor 2 between different
implementations.

Caused by differences in
the cut-offs in collinear
approximation used in all
implementations of gluon
radiation.
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Towards measuring g

Good fits for light hadrons are
obtained for all rad. energy loss
models in 3-D hydrodynamics

Bass, Gale, Majumder, Nonaka, Qin, Renk & Ruppert

r| @ PHENIX 0 - 3% ~
0.8 —— AMY.b=24fm, a =033 e
TLL | et e S g
- L[+ = ASW, b=24fm K=36 i
% 04F 1’ | P
" == - O SRR S ] m
02 prarryetyiiiyys fL:i =3 -
l | 1 | L | 1 | |
OC : | E— — — e— ] | 1
- n PHENIX 20 - 30% -
0.8 AMY.b=751m, a =033 -
- ()() - ”‘l“- [" = 7-1']“? i.i : 7 l.‘S( eV /fm. Co = 0.2 ki
- | |+ =« ASW.b=75fm K=36 g
DA s sz Tz LT ] S DT A R -
- -+ -
0.2 I’ Al
0 | | 1 | | 1 | L |
6 3 10 12 14 16 18 20

Py (GeVic)

Transport parameter g
deviates by more than a
factor 2 between different
implementations.

Caused by differences in
the cut-offs in collinear
approximation used in all
implementations of gluon
radiation.

Generalized, robust
new approach needed.
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The heavy quark conundrum

Heavy quark (c, b) energy loss
deduced from suppression of
6 8 16 i2 i4 16 18 20

g e o o o e o o R weak decay electron spectrum
08 [ e PHENIXO0-5% Prelim @ -

GY Qin & A Majumder

l ": Suppression stronger than
expected.

Va\

3 parameters: ¢, €, ¢,

————— —— : — . 7 7
1 [ ¢ PHENIXO0-10%| ™ ~ = ——=--Q4 Fit: ch =~ 1.1 A% =~ 1.6
Tosh LA STAR0-5% +—

Quidig Quialg

oz 06 pr,: "
o O.-l%;ii_}_,_ = } i g e = contrary to expectations for
0.2 £ %i 7
. T | |

B 5 o a weakly coupled QGP.
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Part 5

We now ask the question:

Is strong coupling
really necessary

for small /s and large é|\ 4

28
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Theory

Can QCD transport be anomalous?

29

Saturday, June 12, 2010



(D » S

Theory

Can QCD transport be anomalous?

®m  Can the extreme opaqueness of the QGP (seen in experiments) be
explained without invoking super-strong coupling ?
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Theory

Can QCD transport be anomalous?

®m  Can the extreme opaqueness of the QGP (seen in experiments) be
explained without invoking super-strong coupling ?

B Answer may lie in the peculiar properties of turbulent plasmas.
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Theory

Can QCD transport be anomalous?

®m  Can the extreme opaqueness of the QGP (seen in experiments) be
explained without invoking super-strong coupling ?

B Answer may lie in the peculiar properties of turbulent plasmas.

m Plasma “turbulence” = random, nonthermal excitation of coherent
field modes with power spectrum similar to the vorticity spectrum in a
turbulent fluid; usually caused by plasma instabilities.
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" A
Can QCD transport be anomalous?

Can the extreme opaqueness of the QGP (seen in experiments) be
explained without invoking super-strong coupling ?

Answer may lie in the peculiar properties of turbulent plasmas.

Plasma “turbulence” = random, nonthermal excitation of coherent
field modes with power spectrum similar to the vorticity spectrum in a
turbulent fluid; usually caused by plasma instabilities.

Plasma instabilities arises naturally in expanding plasmas with an
anisotropic momentum distribution (Weibel-type instabilities).
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Theory

Can QCD transport be anomalous?

®m  Can the extreme opaqueness of the QGP (seen in experiments) be
explained without invoking super-strong coupling ?

B Answer may lie in the peculiar properties of turbulent plasmas.

m Plasma “turbulence” = random, nonthermal excitation of coherent
field modes with power spectrum similar to the vorticity spectrum in a
turbulent fluid; usually caused by plasma instabilities.

B Plasma instabilities arises naturally in expanding plasmas with an
anisotropic momentum distribution (Weibel-type instabilities).

®m  Strong color fields in the early glasma exhibit Sauter and Nielsen-
Olesen-type instabilities that create turbulent color fields.
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Theory

Can QCD transport be anomalous?

®m  Can the extreme opaqueness of the QGP (seen in experiments) be
explained without invoking super-strong coupling ?

B Answer may lie in the peculiar properties of turbulent plasmas.

m Plasma “turbulence” = random, nonthermal excitation of coherent
field modes with power spectrum similar to the vorticity spectrum in a
turbulent fluid; usually caused by plasma instabilities.

B Plasma instabilities arises naturally in expanding plasmas with an
anisotropic momentum distribution (Weibel-type instabilities).

®m  Strong color fields in the early glasma exhibit Sauter and Nielsen-
Olesen-type instabilities that create turbulent color fields.

® As we will see, soft color fields generate anomalous transport
coefficients, which may dominate the transport properties of the
plasma even at moderately weak coupling.
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Glasma instabilities

Theory

F——y

E? =iglat, k]

B? =igelat, o).

Nielsen-Olesen instability of
longitudinal color-magnetic field
(Itakura & Fuijii, lwazaki)

0’9 199 (k,—gA,)’
0T 70T T

—gB 1¢0=0

0.0001 — T . .
IX10° e ¢ +c, Exp(0.427 Vg 1)
SIX100 H= ¢ +c, Exp(0.00544 g1 1)
- i
“g 1x107 —
— -
el - 1 jud e -
T 1x10° -
. 1x10°10 -
= -
1x10-11F -]
110712 -
1x10°13 | | | | | | | | | | [
0 500 1000 1500 2000 2500 3000 3500
2
gpr
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QGP instabilities

Time

Color correlation

length
<€ & >

Length (z)

M. Strickland, hep-ph/0511212

Non-
abelian

Quasi-

A
|
|
|
|
|
|
|
|
|
|
|
|

\ 4

A
|
|
|
|
|
: abelian
|
|

V

Noise
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Anomalous viscosity

Classical expression for shear viscosity:

n= %n]_?}\*f

Momentum change 1n one coherent domain:
Ap =~ gQ"B'r, P

Anomalous mean free path in medium:
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Anomalous g-hat

Jet quenching parameter:

(Ap; (L))
I

q=

Momentum change in one coherent domain:
Ap, = gQ"Bir,

Anomalous jet quenching parameter:

Special case of general relation
between n/s and g” (A. Majumder,
BM & Wang, PRL 99, 192301 ('07).

Relation to anomalous shear viscosity:
3
1
§ 4y

33
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Turbulence < p-Diffusion

Vlasov-Boltzmann transport of thermal partons:

_a , i
'V +F-V ,p,t)=C a a
55 VY [ [/] E° B
with Lorentz force —
F=g0" (E* +vxB") r(t’)

r(t)y=r

Assuming E, B random = Fokker-Planck eq:

J _ _
SV, =V D(p)V, | Frp)=C[ ] ]

p

with diffusion coefficient
D,(p)= [ dt'(F,(F(t).t")F, (r.1)).
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Turbulence < p-Diffusion

Vlasov-Boltzmann transport of thermal partons:

Jd p _
e V. +F-V | f(r,p.t)y=C|[f] E°. B

p

with Lorentz force —
F=g0" (E* +vxB") r(t’)

r(t)y=r

Assuming £, B random = Fokker-Planck eq:
B _

SV, =V D(p)V, | Frp)=C[ ] ]
ot L, il Diffusion 1s dominated by

chromo-magnetic fields:

(B°)t.

with diffusion coefficient

D,(p)= j dt'(F, (F(t'),t")F, (r,t)). fdf'<3(f )B(1))
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Theory

Welbel regime

0

Take moments of oy +£ -V, =V -D(p)-V, |f(r,p,1)= C[f] with p_2
u p _
=
2 2
1 N. & (87, ‘Ing™
—=0(1)—= < 3> +0(10_2)g 1n3g i1
n Nc _1 ST T nA nC
Self-consistency 2 n 1
N, ! . e
—— th ~ _
> p [ 7 ‘Vu‘] compare wi . g4 Ing 1
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Welbel regime

Take moments of aat +£ -V, =V -D(p)-V, |f(r,p,1)= C[f] with p_2
i P |
=
2 2

1 N, g (B), agilng” 11

—=0(1)Nz_1 3 +0(107) = —

n : S N, Mc
Self-consistency 2 T] 1

n, I . e
' —= = th _
> : [ p ‘Vu‘] compare wi . g4 Ing "

Anomalous shear viscosity dominates over collisional shear viscosity

at fixed Vu in the limit g — 0.
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Glasma regime

In the glasma, most of the energy density is in the form of color fields:

Anomalous transport dominates over Boltzmann (collision) transport.

N2 -1 - (N2 -1)Q]
g c dn p° _ ~ Epart
157°C,g° <82 +@2>’L'm }[ PP ) C,8°T,  Epu

Un

Anomalous jet quenching:

C.° (& +B)T, g, 0 10GeV:/im

~

N! -1 0, (©1) 0Ot

da =

In line with estimates of g* ~ 2 - 4 GeV2/fm from fits to data.
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Theory

Caveat explorator

THATS NOT A QUEEN SNAKE ..
|THATS JUST ANOLD TREE BRANCH |
o — et

I SUPPOSE YOU THINK
YOU'RE SMART PRETENDING
VOURE A QUEEN SNAKE!

37

Saturday, June 12, 2010



THATS NOT A QUEEN SNAKE ..
| THATS JUST ANOLD TREE BRANCH|

—--.

QCD
makes it hard to
distinguish between
“queen snakes”
and
“old tree branches”

[T SUPPOSE YOU THINK
JOU'RE SUART PRETENDING
GOURE A GUEEN SNAKE ! /

—
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Connecting jets with the medium

Hard partons probe the medium via the density of colored scattering centers:
i=p|q’dg’*(do | dg*)~ [dx (F**(x)F}(0))

If kinetic theory applies, thermal gluons are quasi-particles that experience the
same medium. Then the shear viscosity is:
1 1
n= §P<Pﬂ~f(]9)> = §< A >

o,.(p)

2q
(p) p

In QCD, small angle scattering dominates: 0,(p)=

With {(p) ~ 3T and s = 3.6p n T’ E : A Majumder, BM, X-N. Wang,
(for gluons) one finds: s g \m,: PRL 99 (2007) 192301
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Example: N=4 SYM

1 135 5 \-3/2
s 4n[1+ 16J§C(3)(g N }

é 3/2 F(3/4) 2
— =T V&N
e I/ ayVe

Strong coupling:

n_ 6.174
s (¢N.) m(236/g°N, )

" 2a7 2
B
D

Weak coupling:

39
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Theory

{weak, strong, true?}

GRE
Comparison

0.50

0.20
© 0.10

0.05

0.02

0.200
0.150

0.100 ¢
0.070 ¢
0.050

0.030-

0.020 -
0.015

0.010+

T3/ghat
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MAC

Theory

Comparison

{weak, strong, true?}

0.50+

0.20

© 010"

0.05+

0.02+

02 04 06 08 10
a
{weak, strong, true?}

0.200
0.150

0.100 ¢
0.070 ¢
0.050

0.030-

0.020 -
0.015

0.010+

T3/ghat

QUL

Blue line is independent of as, but
slowly moves up and down with
parton energy;

Red line depends on as, but is
independent of parton energy (?)

{weak, strong, true?’}

w B
) N e

! =
N )

AR\

(n/s)«+(qhat/T3)

[
W
T ‘ T T
!

[
o

02 04 06 08 10
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Theory

Observables revisited

Which properties of hot QCD matter can we hope to determine

from relativistic heavy ion data ?

TW & ENp,S

c=0dp/oe

n=— j d*x(T,,(x)T,(0))

4naC
N

4naC
N_
n 4naC

=== [y (F )R )

QP
|

Q>
|l

© [y (io" A" ()A™ (0)

é, = = Jay (F00)F )

N’ -

m, =— lim iln(E“(x)E“(o»

| x|— o0 | X |

'

Color screening: Quarkonium states

. spectra, collective flow

: multiparticle correlations

: anisotropic collective flow

parton energy loss
modified jet fragmentation

41
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HQELEE
Observables revisited

Which properties of hot QCD matter can we hope to determine
from relativistic heavy ion data ?

I, < ¢&p.s . spectra, collective flow
Ready for
, Se,.)ilous ¢ =dp/oe : multiparticle correlations
attempt 1
n= —Jd4x<Txy(X)Txy(0)> : anisotropic collective flow
. 4rn’a.C,
— d Fa+l Fa+ O
1= f Y (F* (y)F™(0))
o 47[ a C a+ a+
=N _[dy (i" A" (y)A™(0)) ¢ parton energy loss
e modified jet fragmentation
A T OC a+- a+-—
b= = Jay (F00)F )

1

my, =— lim —1n<E“(X)E“(O)> Color screening: Quarkonium states

| x|— o0 | X | 41
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HEELEE
Observables revisited

Which properties of hot QCD matter can we hope to determine
from relativistic heavy ion data ?

I, < ¢&p.s . spectra, collective flow
Ready for
1 serious ¢ =0dp/oe : multiparticle correlations
attempt 1

n= —Jd4x<Txy(X)Txy(0)> : anisotropic collective flow
Serious A 472’- a C a-+i a+

= dy” F F* (0
theoret. 1 N’ — I y S )>
develop- 4n’a.C,
ments €= N jdy (i" A (y)A'(0))  parton energy loss

needed modified jet fragmentation

n 47rocC
82 N

= Jdy (F*()F" ()

1

my, =— lim —111<E“(X)E“(0)> Color screening: Quarkonium states

| x|— o0 I X | 41
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HQUELE
Challenge to students

I BY THE TME IM \ | |WHY SHOULD T HAVE TO LIVE N
[ EIGHTEEN, I A WORLD SOMEBODY ELSE HAS
H EXPECT THIS MESSED LP2! I°LL GIVE

[ WORLD T0 BE THEM ma.ve To
[ : GET EVERYTHING INORDER

_ —

* P,
PRy

WHAT [F THEY NEED TELL THEM NOT TO BOTHER
MORE TIMEZ WIRING FOR AN E XTE(\SION ..

THE ANSWER UJlLL BE “NO!”

et

) Scne

42
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HEUELE
Challenge to students

— B(mE'nMElM

EIGHTEEN, I
EXPECT THIS
WORLD TO BE
PERFECT!

WHY SHOULD T HAVE TO LIVE N
A WORLD SOMEBODY ELSE HAS
MESSED LP?! I'LL GIVE

| | THEM TWELVE To |
GET EVERYTHING INORDER! |

Are you ready to
beat Lucy’s deadline
and prove that

the world was once
(13.7 billion years ago)

a perfect fluid ?

WHAT [F THEY NEED TELL THEM NOT TO BOTHER
MORE TIMEZ WIRING FOR AN EXTENSION...
THE ANSWER WILL BE “NO!”

=
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Do | hear an
emphatic YES ?






